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A Low-Cost Approach to FMCW Radar: 
Through-Wall Microwatt Radar
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Motivation

• Sophomore-year Summer Research Internship

• Ten weeks allotted project time

• High-resolution imagery at close distances with FMCW radar 
has been shown to be achievable for a modest investment[4]

• This L-band radar system was intended for use with the SAR 
rail and associated data acquisition equipment used by G. 
Charvat for his thesis work.
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• Digitizer and hardware construction issues will be discussed

• A brief synopsis of FMCW radar relevance and utility for 
high-resolution imaging will be presented                         
(simpler hardware, soundcard-like ADC sampling rates)

Discussion
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Radar Block Diagram
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Radar Hardware
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Rack unit: LEDs show power supply status

Front-end unit:  RX modules

Rack unit: TX modules and power supply

Front-end unit: power divider
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Radar Hardware
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Sonnet geometry S11(blue), S12 & S13(red) Actual construction
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Machining issues:
•Designed dimensions[11]: 
in parentheses
actual dimensions: top

•Had to design non-curved 
traces
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Antennas
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•Open-ended circular waveguide are an experimental option for 
low-cost antennas where performance is not critical
•The thin cylindrical probe limited 2:1 VSWR bandwidth to 
approximately 300MHz

•Southworth’s[13] data suggests 
maximum gain of 7dBi at 1.75GHz for 
0.127m diameter open-ended waveguide
•Southworth presents measured data from 
which we reason this antenna’s 3dB 
beamwidth may be less than 50 degrees

Antenna in final configuration
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Antennas
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•The zeros[1] of the relevant Bessel functions[13] determine cutoff 
frequencies for modes supported by a given waveguide diameter.
Multiple families of modes exist[13], with cutoff frequencies:
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Antennas
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The antennas were deemed adequate for initial experimentation

Measured VSWR of open-ended 
waveguide antenna

Thin cylindrical probe
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Antennas

10

•The S12 was tested as an informal check to show that energy 
was being coupled, by holding the cans face-to-face
•Another S12 test measured the isolation of the antennas when 
mounted on the Plexiglas

Coupling: antennas held face-to-face Coupling: antennas on Plexiglas
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Corner Reflectors
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17dBsm corner reflector
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Square corner reflector [2]:

0dBsm and 7.8dBsm

0.45m per side:
dBsm0max =σ

dBsm8.7max =σ
0.26m per side:

0.17m per side:

Corner reflectors were constructed to 
test the radar
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Digitizer
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•A fourth-order Sallen-Key 
Butterworth[9] low-pass filter with 
fc=60kHz was designed for use with a 
DAQCard-6024E digitizer (200ks/s)

•The 6024E has caused difficulties
–Insufficient output sampling rate
–Insufficient data processing 
capability

6024E 100Hz triangle wave output

Video amp output and FFT with 6024E
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Digitizer
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700Hz output to modulator

Function Generator: 12 bit DAC

Digitizer: 8 bit, 250ks/s
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Radar Sensitivity
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The power at the receive antenna terminals from a scatterer in free 
space may be expressed as [2] [3]:

where the terms are as commonly defined.

We recognize as a significant relationship.
Of course, coupling and other noise sources also contribute.

Here, for a 0dBsm scatterer at 5m and 10m with 500μW TX power 
and 7dB antenna gain:
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FMCW Radar Fundamentals
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It may be observed[8] that:

Note: for FMCW radar, we derive tR in a different manner than pulse 
radar, but apply tR similarly.  

;
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FMCW Radar Fundamentals
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FMCW Ranging
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The fR term is the result of the change with time in N standing 
waves[8] between radar and scatterer caused by the frequency 
change of the radar transmitter along with the roundtrip time delay.

presents an ensemble of beat frequencies fR at the homodyne 
receiver’s mixer output due to the scatterers’ ranges.

Coupling from the transmitter to receiver will appear with largest 
amplitude as the lowest range frequencies observed.

Finally,                 gives the number of standing waves[8].

RN&

0
0

2
λ
RN =

R
R

RrR
r

R N
dt

dNtff
f

cfR &&
& ====   ,

2
 :Range FMCW



North American Radio Science 
Meeting - URSI 2007

FMCW Ranging
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We determine range with FMCW through the range frequencies.

It is generally understood that FMCW radar has lower hardware 
demands than a pulse radar of similar range resolution.
However, difficulties[12] ensue with high power monostatic FMCW 
radar.

Thus, FMCW radar is useful for short-range imaging systems, but 
pulsed radar may be more useful for long-range use.
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FMCW Ranging
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Scatterers with spacing        will have range frequency difference: 

Example: a Hamming filter was used with frequency bin size 
650Hz and         seconds up or down sweep time.  The difference in 
beat frequencies between two scatterers with 0.5 meter spacing 
for the given parameters is shown to be:

Note: the minimum scatterer spacing is limited as described on the 
following page.
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FMCW Ranging
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Range resolution is determined in part by the minimum resolvable
frequency difference: 

(N is the number of standing waves between radar and scatterer).

Here, we use 300MHz bandwidth, yielding:

0.5m is shown to be a lower bound for resolvable range difference 
with the given bandwidth.
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FMCW Ranging
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Maximum beat frequency is another limit, since the radar’s 
ADC does not properly process range frequencies above this
limit.

Here, maximum beat frequency is assumed to be about 60kHz, 
based on the four-pole Sallen-Key Butterworth filter currently used.

This concern may be addressed by use of a higher-bitrate ADC.
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FMCW Ranging
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We may note the following:

so:

•Increasing sweep time tm decreases fR,i, approaching the digitizer’s 
frequency bin size (while increasing maximum range within Rmax, filter)
•Increasing radar bandwidth W increases fR, approaching the low-
pass video filter cutoff (useful for higher resolution within fR,max) 

Thus, for a given digitizer and video filter bandwidth, we find tension 
between maximum range and range resolution
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FMCW Ranging
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This relationship between range resolution and radar 
bandwidth reveals the utility of the FMCW method.  
High resolution is achievable at lower ADC sampling 
rates with FMCW vs. pulsed radar.

The range to a scatterer is related to the radar energy’s 
round trip time[12].

For a simple pulse radar, the following relationships exist[3]:

This implies that if a simple rectangular pulse is used, a much 
higher sampling rate (small τr is desired) will be needed for a given 
range resolution for pulse vs. FMCW
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Digitizer
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Direct feed-through TX to RX

While improved processing is in work, an improvised method is used to 
detect scatterers in the high clutter environment:

1. Capture background with no scatterers and store as reference
2. Create another trace as:
3. This allows a basic test of radar functionality 

)FFTabs(FFT RealtimeRefBackground −
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pl
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Direct feed-through TX to RX
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Digitizer
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Through-wall detection of 0dBsm scatterers at microwatt power 
output levels is easily achieved.
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NOT through-wall: 4.2dBm (3 milliwatts)
0dBsm scatterers at 2m and 4m

5dB per division

Through-wall: -2.5dBm (560 microwatts) 
0dBsm scatterers at 0.56m and 1.8m

6dB per division

Through-wall: -2.5dBm (560 microwatts) 
No scatterers

6dB per division
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Future Extensions
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•With sponsorship of a suitable digitizer, further 
hardware/software development would be worthwhile

•Hardware improvements
–Shielded modules to reduce internal coupling

•Imaging algorithms
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Conclusion
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•A useful L-band FMCW radar can be built at modest cost with off-
the-shelf parts

–An adequate digitizer is a must

•The understanding of radar systems and microstrip circuit design
obtained through this project led to further work including:

– Harmonic radar system hardware
– Multi-band planar antenna miniaturization
– Phased array angle accuracy analysis

Thanks to R. Duncan and G. Linde of the Naval Research Laboratory for discussion
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