Michael Hirsch Ph.D.

Grow your engineering endeavor

Dr. Hirsch uses comprehensive model-based engineering frameworks to turn an idea into a product. Broad engineering expertise combined with years of experience bring quick resolve to vexing system issues for geospace/geoscience research as well as corporate and government entities.

  • comprehensive practical and theoretical design experience with RF systems from antenna to CPU and detailed propagation modeling
  • remote sensing: radar & radio science–from microwatt to megawatt with EMC mitigation
  • remote sensing: optical–terabytes/day reduced 1000x by machine learning/machine vision algorithms using edge computing
  • model-based design reduces iterations and speeds path from concept -> bench prototype -> fielded system
  • serves as outside expert for design review, expert witness or pre-money planning and prototyping (whether research grants or startups)

As a governmental example, we work with public safety and transportation entities on their wireless infrastructure, whether in modeling upgrades, solving coverage problems or helping write RFPs and reviewing responses. As an independent voice of experience, Michael helps police, fire, EMS, transit and other public agencies as they maintain and transition from legacy analog radio and data systems to broadband digital networks, including FirstNet. We work with agricultural operations from farmers to companies working with and for agricultural advancement as humankind struggles to feed more with less.

Advocacy: geoscientists on Capitol Hill

Advocacy & Mentoring

Learn More

Bug microwave boards

RF Systems Expert

Learn More

Michael Hirsch presentation

Geoscientist

Learn More

Education

PhD in Electrical Engineering

advised by Joshua Semeter with the Boston University Center for Space Physics, where Michael developed novel ionospheric remote sensing system techniques via optical tomography, radar, and radio instruments. The kickoff to Michael’s doctoral research was an AFOSR-funded study on multiscale (temporal and spatial) features in the aurora. The lessons learned from this system built confidence in the field deployment of a two-camera auroral tomography system to the Poker Flat Research Range near Fairbanks, Alaska. The next generation three-station system with ancillary receivers is nearing deployment, built by the Boston University Science Instrumentation Facility team including Glenn Thayer and Heitor Mourato.

Master of Science in Electrical Engineering

from Boston University in the Space Physics: Remote Sensing & Instrumentation Track.

Bachelor of Science in Electrical Engineering (High Honors)

Advised and mentored by Dean Kempel, Prof. Rothwell and Dr. Greg Charvat